Inequalities. Comparison to zero.

Task 1. Compare to zero! Justify the answer!

a)
$$\frac{x^2+1}{2}$$

b)
$$\frac{-1}{x^2+3}$$

c)
$$-7(x^2+1)$$

What knowledge helped solve the task?_____

Task 2. Solve inequalities by evaluating the meter or denominator sign!

$$a)\frac{-5}{20-x} > 0$$

b)
$$\frac{4y-1}{y^2+1} < 0$$

Your questions:

Write the conclusions using the form: if, then!

- If the members of the actions are positive numbers, the multiplication / division mark is _____
- If the members of the activities are negative, then the multiplication / division mark is _____
- If the multiplication / division mark is a negative number, then the members of the activities are _____
- If the division is a non-negative number, then the members of the activities are _____

Task 3. Prove that the inequalities is true for all variables

a)
$$\frac{(k+8)^2}{13} \ge 0$$

b)
$$\frac{-11}{(m-12)^2} < 0$$

Stage 1,3. Task 1 – Diagnostic. Task 2 – Algorithm.

Task 4.	Solve the inequalities by judging when a division / multiplication is positive or negative
a) $\frac{x-5}{x}$	b) (2-x)(2x+6)<0
Write an	algorithm that can be used to solve inequalities $g(x) \cdot f(x) > 0$ un $g(x) / f(x) > 0$
-	